Probing ML Models for Fairness With the What-If Tool & SHAP

James Wexler & Andrew Zaldivar
With Sara Robinson, Mahima Pushkarna & Tolga Bolukbasi

https://whatif-tool.dev
PAIR’s mission is to conduct **human-centered research and design** to make human-AI partnerships productive, enjoyable, and fair.

We make technology.

Above: A sampling of work from PAIR.
Q: How does explainability fit into the ML lifecycle?

1. Gather and pre-process data
2. Build model
3. Run training and evaluation
4. Deploy model
5. Make predictions

- Identify dataset imbalances
- Set prediction thresholds
- Ensure model is treating all groups fairly
- Understand model behavior on real data
- Surface prediction analysis to end users
The explainability process

1. Identify dataset imbalances
2. Ensure model is treating all groups fairly
3. Set prediction thresholds
4. Understand model behavior on real data
5. Surface prediction analysis to end users
Q: How can biases be introduced into ML lifecycles?

1. We choose the data sources.
 * Data sources may not contain fully-accurate ground truth.
2. We build the model.
3. We run training and evaluation.
 * Outcomes could be incidental rather than causally meaningful.
4. We deploy the model.
5. We design outcomes people experience.
 * Models may be blind to broader societal issues.
We choose the data sources.

We design what outcomes people experience.

Models may be blind to broader societal issues.

Insights about data sources may be hard to obtain.

Unintended biases become a property of the model.

Unfair applications arise.

We operationalize the model(s).

Incidental rather than causally meaningful outcomes.
Algorithmic Unfairness: Some examples

Representational Harm
When an ML system amplifies or reflects negative stereotypes about particular groups.

Opportunity Denial
When an ML system negatively impacts individuals’ access to opportunities, resources, and overall quality of life.

Disproportionate Failure
When the experience of interacting with an ML system is disproportionately failing for particular groups.

Adapted from “The Trouble with Bias” by Kate Crawford – NeurIPS 2017 Keynote (Video)
Google’s AI Principles

1. Be socially beneficial.
2. Avoid creating or reinforcing unfair bias.
3. Be built and tested for safety.
4. Be accountable to people.
5. Incorporate privacy design principles.
6. Uphold high standards of scientific excellence.
7. Be made available for uses that accord with these principles.
There are many different interpretability approaches...

<table>
<thead>
<tr>
<th>Feature Attributions</th>
<th>Model & Data Analysis</th>
<th>Gradient & Concept Testing</th>
<th>Datapoint Inspection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated gradients</td>
<td>What-If Tool</td>
<td>TCAV</td>
<td>Partial Dependence Plots</td>
</tr>
<tr>
<td>SHAP</td>
<td>Facets</td>
<td>Grad-CAM</td>
<td>Counterfactuals</td>
</tr>
<tr>
<td>LIME</td>
<td>Fairness Indicators</td>
<td>Guided Backpropagation</td>
<td>Ablation testing</td>
</tr>
<tr>
<td>XRAI</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
We’ll focus on these two:

Feature Attributions
- Integrated gradients
- SHAP
- LIME
- XRAI

Model & Data Analysis
- What-If Tool
- Facets
- Fairness Indicators

Gradient & Concept Testing
- TCAV
- Grad-CAM
- Guided Backpropagation

Datapoint Inspection
- Partial Dependence Plots
- Counterfactuals
- Ablation testing
How does my model perform...

classification accuracy / precision-recall curve / logarithmic loss / area under the curve / mean squared error / mean absolute error / F1 score / standard deviation / variance / confidence intervals / KL divergence / false positive rate / false negative rate / <insert metric here>
How **might** my model perform...

on subgroups in test data / on cross-slices in test data / on an individual data point / if a datapoint is perturbed / if model thresholds were different/ if optimized differently / across all values of a feature / when compared to a different model / on different data points within a neighborhood of data points / <insert question here>
What if...

you could inspect
machine learning models,
with **minimal coding**
required?

#WhatIfTool whatif-tool.dev
Supports *What-If* analysis
Easily ask hypotheticals

Alter datapoints and see how model outputs change

Above: Editing a feature value and then running inference preserves a history of inference values. Alternatively, users can explore partial dependence plots for each feature, sorted by interestingness.
Counterfactuals

“What would have to change for me to have gotten the loan?”

$$\arg \min_{x'} \max_\lambda \lambda (f_w(x') - y')^2 + d(x_i, x')$$

Approaches

- Optimization problem to find hypothetical datapoint
- Search across real examples

Wachter et al. “Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR”

#WhatIfTool whatif-tool.dev
Explore decision boundaries

Translating counterfactual research into visual tooling within workflows.

Above: For classification problems, our counterfactual finding feature can identify the most similar datapoint (to a selection) in the loaded data that was classified differently by the model. For any dataset, L1 & L2 distances are available as inbuilt similarity metrics. However, users can specify custom metrics when invoking the tool.
Scale up without changing user’s mental models

Compare performances of multiple models on the same simulation simultaneously.

Above: For classification problems, our counterfactual finding feature can identify the most similar datapoint (to a selection) in the loaded data that was classified differently by the model. For any dataset, L1 & L2 distances are available as inbuilt similarity metrics. However, users can specify custom metrics when invoking the tool.

#WhatIfTool whatif-tool.dev
Support many workflows without coding

Create custom visualizations using dataset features and model scores.

Above: Users can bin, scatter, color and label by any feature in the loaded dataset. This is useful for exploring the dataset and model results, as well as identifying biases in and suboptimal performance on specific slices of the dataset.
User-focused customizations

Ways to specify custom...

Models
Data
Distances (eg. Similarity metrics)
Attributions (eg. TCAV)
...

```python
# This function extracts 'image/encoded' field, which is a reserved key for the
# feature that contains encoded image byte list. We read this feature into
# BytesIO and decode it back to an image using PIL.
# The model expects an array of images that are floats in range 0.0 to 1.0 and
# outputs a numpy array of (n_samples, n_labels)

def custom_predict(examples_to_infer):
    def load_byte_img(im_bytes):
        buf = BytesIO(im_bytes)
        return np.array(Image.open(buf), dtype=np.float64) / 255.

    ims = [load_byte_img(ex.features.feature['image/encoded'].bytes_list.value[0])
           for ex in examples_to_infer]
    preds = modell.predict(np.array(ims))
    return preds

Above: Example of a custom predict function in colabatory
```
Visualizes model performance
Allow user-defined intersectional analysis

Evaluate performance on sub-groups of data rooted in feature values.

Above: Exploring model performance on different ‘slices’ of data given the values of specific features.
Explore ML Fairness optimizations

Translating fairness research into visual tooling.

Above: Exploring model performance on different 'slices' of data given the values of specific features.
Open-Source Tool

https://whatif-tool.dev
pip install witwidget
Q: What is **feature attribution**?

A: The amount each feature in a model contributes to the model’s prediction.

For example

A model predicts you are 80% (0.8) likely to be approved for a loan.

Feature attributions:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Attribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.3</td>
</tr>
<tr>
<td>Income</td>
<td>0.6</td>
</tr>
<tr>
<td>Credit Score</td>
<td>-0.1</td>
</tr>
</tbody>
</table>
Q: What is SHAP?

A: An open source framework for inspecting any machine learning model through feature attributions.

#SHAP
github.com/slundberg/shap
Q: How does SHAP work?

What does SHAP return?

SHAP assigns importance values to each feature indicating the effect that feature had on the model prediction.

How does SHAP calculate this?

SHAP approximates the effect of removing a feature from the model.

- Returns instance-level feature attributions along with global model-level feature importance.
- Works on image, text, and tabular models built with many different ML frameworks (TF, Scikit Learn, XGB, PyTorch).

Learn more: papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
Q: How does SHAP work?

\[
\phi_i(N, v) = \frac{1}{N!} \sum_{S \subseteq N \setminus \{i\}} |S|!(|N| - |S| - 1)! \left[v(S \cup \{i\}) - v(S) \right]
\]

Weighted average of the marginal contribution for an agent.

How much does adding or removing a single feature affect the prediction?

Learn more: papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
Q: How does SHAP work?

Instance-level attributions

Shows how each feature changes the model output from the baseline.

Red features pushed the prediction up from the baseline, blue features pushed it down.

Model-level attributions

Learn more: papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
Q: How might we interpret image model attributions?

Animal Species Classification Model

- dowitcher
- red-backed_sandpiper
- meerkat
- mongoose

Diabetic Retinopathy (non-SHAP)
import shap

Create the explainer
explainer = shap.DeepExplainer(model, train_data.values[:200])

Get attribution values
shap_values = explainer.shap_values(train_data.values[:5])
Colab Notebook Exercise
Find link at:

Caveats

Many approaches to interpreting models

Explainability is an emerging field with lots of ongoing research.

We’ve only shown a few methods.

Other techniques include: Integrated Gradients, LIME, SmoothGrad, etc...

Attribution techniques can be unreliable (see The (Un)reliability of saliency methods and related papers).

“ML fairness” doesn’t solve societal issues

Making a model more fair has no effect on issues that may have caused creation of a problematic dataset.

Fairer models can still be used to treat people unfairly.

The world is not static - model decisions affect future situations. See the ML Fairness Gym project.
Discussion

What did we discover?

Any interesting patterns in model behavior?
What were the performance disparities between groups?
What features had the largest effect on predictions?
What ways did you use the tool to find insights?
How does this speak to the larger issues with this data/task?

Did anyone train a new model?

What differences in performance occurred?
What differences in attributions occurred?
How does this speak to the larger issues with this data/task?
Your feedback is important to us!
Scan the code below:

Thank You

More What-If Tool
People + AI Research
Get in touch
This feedback form

whatif-tool.dev
ai.google.com/pair
groups.google.com/g/what-if-tool
forms.gle/ugkNHkVqJspK7v9Q9